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LE'ITER TO THE EDITOR 

Classical phase-space structure of the single-particle motion in 
cranked potentials 

J Reift and R Reif$ 
t Zentralinstitut fiir Kemforschung Rossendorf, lnstitut fiir Subatomare Physik. PF 19, 
0-8051 Dresden, Federal Republic of Germany 
a Technische Universitit Dresden, Institut fiir Theoretische Physik, Mommsenstrasse 13, 
0-8027 Dresden, Federal Republic of Germany 

Received 17 September 1991 

Abstract. The phase-space slmcture o f  the single-panicle motion in three-dimensional 
cranked Buck-Pill potentials of  lemniscatoidic shape has been investigated in terms o f  
Poincar6 surfaces of section, the mean value of positive maximal Ljapunov exponents, and 
the chaotic fraction of phase space as a function of the rotational frequency. Due to the 
rotation of a partial regularization of the panicle motion was found for certain values o f  
deformation and irequency. 

The investigation of the mixing of regular and chaotic aspects of nuclear motion and 
the search for its manifestation in various observables involving different degrees of 
freedom are current subjects of growing interest (for a review see [l]). Based on 
numerical calculations within the framework of realistic models as well as on com- 
parisons of predicted statistical distributions with available (mostly scarce) experi- 
mental data, a general goal of these efforts is to identify the signature of quantum 
chaos in the dynamics of small quantum systems which behave irregularly in the 
classical limit. 

From measured reaction data on neutron and proton resonances in medium and 
heavy nuclei one can state that the observed spectral fluctuation properties expressed 

are consistent with the predictions of the random matrix theory [Z-61. According to 
the conjecture [7] that a fully chaotic system with time-reversal symmetry is associated 
with the Gaussian orthogonal ensemble (GOE) of random matrices this result allows 
for the conclusion that the dynamics underlying the internal motion of compound 
nuclei is generally chaotic. But, deduced from the features of highly excited compound 
nuclei such a statement is first of all restricted to the energy domain near to the 
particle-decay threshold, a region of high nuclear level density. So the question arises 
as to what extent chaotic behaviour can prevail also in the lower part of the nuclear 
spectrum where the nucleonic motion is governed by the mean field, and appropriate 
concepts to interpret individual states are provided by the shell model and the collective 
model. 

In treating this problem from the experimental side, Abul-Magd and Weidenmiiller 
[8] analysed a rather small sample of data on low-lying levels in nuclei ranging from 
'%a to 2MAm with the crude indication that only rotational states in even-even nuclei 
seem to behave rather regularly. From the theoretical side, the onset of chaos in rapidly 
rotating nuclei has been studied by Aberg [9] on a microscopic basis by adding a 
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schematic two-body residual interaction to a cranked Nilsson Hamiltonian. The com- 
puted A, statistics for the energy levels labelled by a certain spin as well as the 
fragmentation of the rotational B(E2) transition strength indicate that, e.g., for I =50+ 
states a smooth transition to chaos proceeds in the excitation energy interval 3-3.5 MeV 
above the yrast line as the strength of the residual interaction reaches a value which 
agrees with the average level spacing between neighbouring 2p2h states. Further studies 
[10-12] of order-to-chaos transitions for collective nuclear states have been performed 
WLUML LUC I C L L G I ~ L L M ~  uu~ui i  IIIUUCI ( IBMI.  111 p a ~ u ~ u m ~ ,  f i ~ i a s s ~ u  ei  ut LLI, I L J  mvesn- 
gated a family of Hamiltonians in which an interpolation between the limits of rotational 
and y-unstable even-even nuclei is realized by varying a single parameter. In the 
limiting cases the system is completely integrable due to the dynamical symmetries 
contained in the model, but in the transition region the onset of chaos is observed in 
both the level and the B( E 2 )  statistics. The chaotic regime is more gradually approached 
from the side of rotational nuclei (SU(3) limit). Performing the semiclassical limit of 
the IBM, it has been shown that the classical measures of chaos (average maximal 
Ljapunov exponent, chaotic volume of the phase space) are perfectly correlated with 
the quantal ones. 

The theoretical basis for the treatment of nuclear rotational motion is provided by 
the cranking model [13]. In the framework of the cranking model various nuclear 
properties are determined by the response of the nucleons confined in a potential to 
a rotation with constant frequency w about an axis perpendicular to the symmetry 
axis. So, the investigation of the phase-space structure of the three-dimensional single- 
particle motion in a cranked realistic potential turns out to be a basic task in the 
discussion of chaos in many-body systems. 

The rotation of (two-dimensional) classical billiards with angular velocity perpen- 
dicular to the billiard table has been studied for a circular surface rotating about a 
point on its edge by Fairlie and Siegwart [I41 (for the quantal analogue see also [15]) 
and for an elliptic boundary rotating around its centre by Frisk and Arvieu [16]. Frisk 
and Arvieu gave also some results for the rotating stadium. 

The present letter extends the investigations of Milek and Reif [I71 on classical 
versus quantum chaos in the single-particle motion in strongly deformed fields by 
analysing the classical phase-space structure of a cranked realistic potential in three 

equipotential surfaces deformed according to lemniscatoidic shapes symmetric with 
respect to the z-axis 
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1 +cosh( R , / a )  
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V ( u )  = - v, 

x2+ y2+ 2 
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u = R o  

The deformation parameter 6 = B/C ranges from 1 to 0, covering a family of shapes 
between a single sphere and two touching spheres, respectively, as it takes place in 
nuclear fission processes and heavy-ion reactions. Numerical calculations of classical 
single-particle trajectories have been performed for a heavy nucleus (A = 252, Ro= 
l.2A”’ fm, Vo= 52 MeV, a = 0.66 fm) with various shapes of the potential given by 
S = 0.9 (weakly quadrupole deformed), 0.8, 0.6 (appreciable neck formation). The 
choice of the binding energy of the particle according to = ( V ,  - /E l ) /  Vo = 0.625 fixes 
the frequency n of the single-particle motion, w = E / h  = 19.5 MeV/h. The Newtonian 
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equations of motion in the rotating system have been integrated by a standard Runge- 
Kutta method for fixed frequencies w in the range IwI = 0 up to Io1 = 1.6 of clockwise 
(o < 0) as well as counterclockwise (o > 0 )  rotation about the x-axis. Using a moment 
of inertia of 3 - 50h2 MeV-’ the interval of rotational frequencies implies high-spin 
states up to I - 80h. The chosen initial conditions realize a single-particle angular 
momentum with a fixed z-component (Lz = Zh), a y-component equal to zero and an 
x-component directed in the positive x direction with a magnitude following from the 
considered binding energy. 

Following Awieu et a1 [19], in accordance with the symmetry of the problem the 
phase-space portrait in terms of Poincar6 surfaces of sections ( PSS) has been represented 
for the intrinsic system in terms of cylindrical coordinates e’, u o . = p p . / m  (m is the 
neutron mass) with respect to the equatorial plane (z’ = 0, px,  > 0 )  and additionally, in 
order to complete the visualization of the trajectories, also with respect to a plane 
containing the symmetry axis (y’=O,p,,>O). Referring to the topology of the PSS for 
the static case, w = 0, Lx = const, for the regular trajectories only restricted parts of the 
invariant curves associated with crossings near to the central region of the potential 
are replaced by a stochastic distribution of points if the rotation proceeds with low 
frequency. This change in the phase-space portrait is created by an additional curvature 
of the trajectories due to the inertial forces added in the rotating system. Increasing 
the rotational frequency, chaos is produced gradually for the whole available phase 
space, the most stable orbits appearing to be the trajectories near to the fixed point of 
the map (geodesics) (see figure 1). The clockwise rotation with the collective angular 
momentum and the x-component of the initial single-particle angular momentum 
oriented in opposite directions tums out to be more effective in generating a transition 
from regular to chaotic motion than a counterclockwise rotation (compare figures l(c) 
and l(d)).  

Obviously, the pss are insufficient to deduce clear statements on the character of 
the trajectory or the degree of stochasticity of the phase space, presumably even if one 
would employ more convenient coordinates as done by Frisk and Arvieu [16] for the 
billiard. Therefore, the maximal Ljapunov exponent A has been computed [17] in the 
rotating system in order to characterize the behaviour of neighbouring trajectories. 
The evolution of the time limit appearing in the definition of A has been followed in 
general up to I,.. -2  x lo5 fm/c and the values of A(tmax) S 5.5 x c/fm have been 
interpreted as indicating a regular trajectory ( A  = 0).  In figure 2 the order-to-chaos 
transition due to growing cranking frequencies is expressed by the function A ( ( )  for 
10 trajectories which all are regular in the static case. One observes that for a low 
rotational frequency of o =0.2 MeV/h (figure 2 ( a ) )  five trajectories remain stable 
(A(lm.,);=5x c/fm) while five orbits become irregular (A(tmax)> 2x lo-’ c/fm). 
For a faster rotation, o =0.8 MeV/h (figure 2 ( b ) ) ,  all trajectories are chaotic. But it 
should be mentioned that in other cases also trajectories exist the large positive 
Ljapunov exponent of which is lowered by a rotation of the potential with certain 
frequency. 

In order to characterize the phase-space organization as a function of the cranking 
frequency in a more quantitative manner the maximal Ljapunov exponents have been 
calculated for a grid of initial conditions in the available phase space including about 
350 mesh points. Then, one can deduce an average positive Ljapunov exponent 1 and 
a chaotic volume paccording t o p  = NJ( N,+ NJ, where N, and N, denote the number 
of initial conditions leading to chaotic and regular trajectories, respectively. Due to 
the finite time limit in the calculations a few values of A(lmmx) come out close to the 
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Figure I. Poincarb surfaces of section ( z ' = O , p + > O )  generated by IO trajectories with 
initial angular momentum components L,  > O .  L,, = 0, L, = 2 h  for deformation parameter 
S =0.9 andvarious rotational frequencies W. ( a ) :  w =0.2 MeVlh, ( b ) :  w =0.4MeV/hS ( e ) :  
w = O . 8  MeVlh, ( d ) :  ~ = - 0 . 8 M e V / h .  Forthestaticease(w=O)thephasespaceisregular. 
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Figure 2. Time dependence of the numerically calculated Ljapunov exponents A for IO 
trajectories behaving regular in the static case (U =O). Initial angular momentum: L,  > 0, 
L , = O ,  L,=Zh. ( a ) :  w=O.ZMeV/h,(b): o=0.8MeV/h.  
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Figure 3. ( a )  Chaotic volume p as a function o f  the cranking frequency o for various 
deformation parameters 6. Initial orbital angular momentum: L,r >O. L,  = 0 ,  L; = 2 h .  ( b )  
Maximal positive Ljapunov exponenl A in dependence o f  W. Deformation parameter: 
S =0.8, initial condition: p = 5.1 fm, U. = 0.012c, initial angular momentum: L,  5 0, L, = O ,  
L,=24.  
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bouncing-ball trajectories. This behaviour is demonstrated in figure 3(b) which shows 
the maximal Ljapunov exponent A as a function of o for an initial condition selected 
close to the fixed point. But, it should be stressed that for the present potential with 
its smooth surface region the stabilization of regularity is less pronounced than it was 
found [ 161 for the elliptic billiard or the stadium. 

The w dependence of the average Ljapunov exponent x shows the same properties. 
The present investigations of the classical single-particle motion in a cranked 

potential has to be carried on by the analysis of the spectral properties of the quantum 
analogue. For the nearest-neighbour level-spacing distribution one expects a level 
repulsion according to the Gaussian unitary ensemble because of the broken time 
reversal symmetry of the problem. Further, it should be necessary to work out the 
consequences of the classical phase-space organization to the dynamical properties of 
nuclei as moments of inertia, transition rates, shape and angular momentum dependence 
of viscosity, or the centrifugal solidifaction of superdeformed nuclei [ZO]. For a rotating 
elliptic billiard Traiber et a/ [21] found out already that irregularities in the behaviour 
of the dynamical moment of inertia of a quantum many-particle system are associated 
with the chaotic dynamics of the corresponding classical system. The influence of the 
coexistence of regular and chaotic aspects of nuclear dynamics on the time evolution 
of nuclei in heavy-ion reactions and fission processes could be of particular interest [22]. 

The help of Dr H-G Reusch, IBM Deutschland, Wissenschaftliches Zentrum Heidel- 
berg in performing the numerical calculations at the IBM 3090 computer of the 
Technical University Dresden is gratefully acknowledged. 
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